新闻源 财富源

2025年01月23日 星期四

财经 > 滚动新闻 > 正文

字号:  

由个性化医疗看大数据时代政府科研管理改革

  • 发布时间:2015-01-25 01:30:52  来源:科技日报  作者:佚名  责任编辑:罗伯特

  ■决策视野

  编者按 根据《关于深化中央财政科技计划(专项、基金等)管理改革的方案》,对政府科研管理改革而言,最急迫的问题是:由微观到宏观,由碎片到完整,究竟如何管?它山之石可以攻玉,本文从美国个性化医疗所依托大数据预测的过程设计、需求设计,类比应用大数据管理科研项目的共通之处,力求为大数据时代的科研管理提供一些借鉴。

  当前,美国的新医改法案推动医院向一个被称为“责任关怀”的新模式转变,建设可信赖医疗组织(ACO)。法案为大数据在医疗行业的应用提供了环境,随着医疗领域中包含基因数据的电子病历(EMR)的推广应用和个人基因监测服务及大数据分析技术的发展,个性化医疗由概念正成为现实。大数据在个性化医疗领域中的应用,对政府科研管理改革提供了诸多启示。

  从大数据对比个性化医疗和科研管理

  1.数据的可靠性及数据解构的需求分析是核心

  大多数医疗机构的数据来自临床、财务、操作的应用程序。临床数据能提高医疗质量,提升人口健康管理;财务数据帮助医院对盈亏底线做成本分析;而操作数据能帮助设备管理和资源利用。在大数据时代,把这些数据综合在一起,可以开始解决类似满足病患需求、提高工作效率和护理质量等大问题,把不同类型的数据资源区分开并不必要。对于数据专家来说,数据就只是位与字节,应该将临床数据和商业数据整合在一起,只是需要一个更复杂的医疗数据分析方法。

  因此对医疗行业来说,问题的核心不是数据来源,而是这些数据的可靠性及数据解构的需求分析。这同科研管理对数据需求面临的问题是类似的:科研经费使用、人员培养、论文、专利、科研设备利用等类项,同样充满了大量的数据,不论这些数据是来自于以往还是即将问世的科技计划(专项)。科研管理者要解决的核心问题是将收集到的可靠数据,根据管理需求设计出合理的分析方法,从而为决策服务。

  2.大量无结构化的数据使数据分析困难

  医疗机构进行数据分析的前提是有可以分析的数据。但目前的实际情况是,美国医疗机构中80%以上的医疗数据都是无结构的,无论纸质还是其他形式的都需要手动提取数据;甚至是结构数据,也经常无法分析。因此,多数医疗机构最终都使用来自保险公司的数据来了解自己的机构,提出改进的建议。

  我国科研管理应用大数据技术同样面临这样的问题:长期以来,大部分科研机构不注重自身数据的积累,科研管理各部门对数据报送缺乏针对性的要求,所掌握的数据大部分都是无结构的,也不能在部门间流通与共享,对大量的无结构和结构数据无法进行二次挖掘利用,反而需要被动地应对外界的研究结果对科研管理部门的质疑。

  3.数据需求分析的研究将不断发展深入

  根据西奈山医院的研究,医疗机构的规模对医疗商业智能化的影响很大。大部分的医疗机构都看到了商业智能的价值,但它们一直想不清楚该做什么。按照美国的医改法案,美国的医院每年要向政府机构提供管理运营报告。运营报告的要求十分明确,但医疗机构自身通常不知道接下来该怎么做,也不知道如何把报告中的数据使用好,来提高实际操作的效率或者是做出其他的改进。从美国医改的进程看,目前美国健康医疗的政府管理部门对提交报告的数据分析及应用也在摸索之中。

  科研机构与科研管理部门也对数据分析研究有同样的需求。科研机构按管理部门的考核要求把科研成果、科研经费使用、人才培养等方面进行数据统计提交,但很少根据自身发展需要对形成的统计数据进行深度分析;而管理部门立项之初设计的考核指标,也主要是从项目类型出发,对所提交的数据缺乏联系发掘,加之各管理部门甚至部门内部的数据难以做到共享,难以实现通过数据分析对不同类型科研项目经费的投入与强度作出适时的调整与改进。

  4.完善数据库和缺乏数据分析专业人才是当前的挑战

  由于美国医改法案的实施,有两个重要的原因会让医疗机构逐步采用先进的数据分析。一是如果患者的医生推荐的方案和其健康计划差别较大时,患者就会更愿意选择保险公司提供的计划。二是新医改法案建设的ACO模式,强调医疗行业的数据分析和信息技术应用。当ACO模式逐步扩大规模后,医疗机构就会发现急需检测无结构数据及其它数据源,而大部分医疗机构没有足够的人手来管理和利用好它们的数据库。按照西奈山医院的研究预测,“那些既不用数据库,又缺乏相应人才的医疗机构,最后可能要被迫整合到更大的服务网络”,也就是说,将有专业数据服务机构从商机中孕育而出。

  面对不断增加的科研投入、海量的科研项目,政府科研管理部门无力也难以高效地管理具体项目,需要委托专业的管理机构对科研项目进行管理。但无论政府管理部门、执行项目的科技机构,还是专业管理机构,构建或利用好以往与现有的数据资源,培训与培养相应的数据分析人才都是当前面临的重要挑战。

  对科研管理的启示与建议

  1.政府管思维:培养科研管理人员的大数据思维

  大数据技术为我们提供了一种优化科研资源分配、减少浪费重复、预测科研趋势、预防科研腐败的全新工具。运用大数据思维的科研管理,不仅会为科研管理的改革提供支撑,而且会根本杜绝以前管理模式解决不了的难题。在大数据时代,政府科研管理人员要学会运用大数据思维去发掘科研数据的潜在价值,根据管理需求,对科技数据进行收集、解构、分析,从而形成科学的决策依据,而这恰恰也是政府科研管理的核心竞争力。

  2.政府管标准:从科研项目申报、考核流程上着手数据结构化

  将科研管理数据结构化,是运用大数据工具的前提。将以往的纸质数据电子化,将当前电子数据结构化是两大任务。两项任务的共通点是应建立统一的数据结构,才能进行有效的数据分析。政府科研管理部门可以先从项目申报、考核的设计流程上着手,统一标准,保证数据结构化,为数据分析打好基础,提升管理质量。

  3.政府管共享:着力国家科技报告制度

  目前,我国的国家科技报告制度已经正式启动,一方面有利于管理部门逐渐积累各行各业更加广泛的科研基础数据,另一方面也对政府部门科研管理的有效性提出了更高的要求。从内部管理来说,政府科研管理部门需要向科研机构、高校、企业等公开管理流程,汇集科研数据,具备数据分析的支撑决策的能力;从外部监督来说,科研管理部门公开的数据无论是成绩还是不足都应该能够经得住社会公众的问讯。

  4.政府管方式:科学决策机构式和项目式资助的形式

  机构式资助可以保持机构的稳定,能够比较充分地发挥研究人员的自主性,但对经费的使用绩效比较难做到有效的监督和评价。项目式资助有利于保障优先领域的研究需求和促进跨学科研究,但不利于长期的研究积累和储备,而且对于好奇心驱动的研究会产生负面影响,导致好奇心驱动的研究和基础研究的数量下降。如何兼顾项目式资助和机构式资助的平衡是优化公共科研机构资助方式长期而重要的问题。

  利用大数据管理方式可以开展科研管理数据的智能化分析,科学指导科研资源分配,提高公共研究机构的创新能力。

  (作者单位:中国科学技术发展战略研究院)

大数据 详细

涨幅榜 更多

排名 股票名称 最新价 涨跌幅
1 紫光股份 80.14 10.01%
2 东软集团 15.94 10.01%
3 赛为智能 18.52 9.98%
4 航天信息 27.13 7.28%
5 天源迪科 17.00 6.25%

跌幅榜 更多

排名 股票名称 最新价 涨跌幅
1 天夏智慧 12.58 -5.77%
2 上海钢联 74.30 -3.19%
3 美的集团 52.84 -3.10%
4 南威软件 12.10 -2.97%
5 奥飞数据 75.28 -2.87%

热图一览

高清图集赏析

  • 股票名称 最新价 涨跌幅